Synthetic Organic Compounds: Oct 2020 - Dec 2020												
	COMPOUND: 1,4-Dioxane ug/L				COMPOUND: PFOA ug/L				COMPOUND: PFOS ug/L			
Distribution	Low	High	Avg.	No. Of	Low	High	Avg.	No. Of	Low	High	Avg.	No. Of
Area	Value	Value	Value	Tests	Value	Value	Value	Tests	Value	Value	Value	Tests
1	ND	0.41	0.09	72	ND	0.005	ND	64	ND	0.006	ND	64
4	ND	ND	ND	1	ND	ND	ND	4	ND	ND	ND	4
5	ND	0.48	0.32	4	ND	ND	ND	3	ND	ND	ND	3
6	ND	0.97	0.40	18	ND	ND	ND	11	ND	ND	ND	11
8	ND	0.17	0.08	4	ND	ND	ND	1	ND	ND	ND	1
9	ND	1.05	0.71	7	ND	ND	ND	4	ND	ND	ND	4
10	0.18	1.30	0.49	15	ND	ND	ND	10	ND	0.005	0.002	10
11	0.13	1.19	0.51	17	ND	0.003	ND	14	ND	ND	ND	14
12	ND	0.87	0.16	91	ND	0.010	0.002	84	ND	0.009	0.002	84
14	ND	0.12	ND	3	ND	ND	ND	2	ND	ND	ND	2
15	ND	0.89	0.21	62	ND	0.007	0.002	63	ND	0.005	0.002	63
20	ND	0.13	ND	21	ND	0.003	ND	36	ND	0.004	ND	36
23	ND	0.19	ND	26	ND	0.003	ND	37	ND	0.003	ND	37
26	ND	ND	ND	7	ND	ND	ND	4	ND	ND	ND	4
30	ND	0.11	ND	25	ND	ND	ND	37	ND	ND	ND	37
32	ND	ND	ND	2	ND	ND	ND	3	ND	ND	ND	3
34	ND	ND	ND	2	ND	ND	ND	2	ND	ND	ND	2
35	ND	ND	ND	2	ND	ND	ND	3	ND	ND	ND	3
44	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	1
53	ND	ND	ND	3	ND	ND	ND	5	ND	ND	ND	5
54	ND	ND	ND	11	ND	ND	ND	5	ND	ND	ND	5
57	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	1
64	ND	ND	ND	1	ND	ND	ND	1	ND	ND	ND	1
EFWD	0.09	0.10	0.09	2	ND	ND	ND	1	ND	ND	ND	1
SBWD	0.22	0.22	0.22	1	ND	ND	ND	1	0.003	0.003	0.003	1